Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Cytotherapy ; 25(3): 330-340, 2023 03.
Article in English | MEDLINE | ID: covidwho-2180302

ABSTRACT

BACKGROUND AIMS: We have previously demonstrated the safety and feasibility of adoptive cell therapy with CD45RA- memory T cells containing severe acute respiratory syndrome coronavirus 2-specific T cells for patients with coronavirus disease 2019 from an unvaccinated donor who was chosen based on human leukocyte antigen compatibility and cellular response. In this study, we examined the durability of cellular and humoral immunity within CD45RA- memory T cells and the effect of dexamethasone, the current standard of care treatment, and interleukin-15, a cytokine critically involved in T-cell maintenance and survival. METHODS: We performed a longitudinal analysis from previously severe acute respiratory syndrome coronavirus 2-infected and infection-naïve individuals covering 21 months from infection and 10 months after full vaccination with the BNT162b2 Pfizer/BioNTech vaccine. RESULTS: We observed that cellular responses are maintained over time. Humoral responses increased after vaccination but were gradually lost. In addition, dexamethasone did not alter cell functionality or proliferation of CD45RA- T cells, and interleukin-15 increased the memory T-cell activation state, regulatory T cell expression, and interferon gamma release. CONCLUSIONS: Our results suggest that the best donors for adoptive cell therapy would be recovered individuals and 2 months after vaccination, although further studies with larger cohorts would be needed to confirm this finding. Dexamethasone did not affect the characteristics of the memory T cells at a concentration used in the clinical practice and IL-15 showed a positive effect on SARS-CoV-2-specific CD45RA- T cells.


Subject(s)
COVID-19 , Interferon-gamma , Humans , Interferon-gamma/metabolism , Interleukin-15 , Memory T Cells , Donor Selection , BNT162 Vaccine , COVID-19/therapy , SARS-CoV-2 , COVID-19 Drug Treatment , Leukocyte Common Antigens/metabolism , Phenotype , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Cell Proliferation , Antibodies, Viral , Vaccination
3.
Immunology ; 165(2): 234-249, 2022 02.
Article in English | MEDLINE | ID: covidwho-1511321

ABSTRACT

COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).


Subject(s)
Adoptive Transfer , Blood Donors , COVID-19/immunology , Convalescence , Immunologic Memory , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL